U
-
\Q

s}
~H
[
i
o
=
A z
&
3
<q
P
& o)
=
w
(@)
i

|

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS G

TECHNICAL NOTE

No, 1748

CALCULATION OF TUNNEL-INDUCED UPWASH VELOCITIES
FOR SWEPT AND YAWED WINGS
By S. Katzoff and Margery E, Hannah

Langley Aeronautical Laboratory
Langley Field, Va,

~WE

Washington
November 1948

A .
LN

~y‘":a”d
[ .'uJ,‘,U
T SRR I R
Lot o odemand
T

s mwl

(
L

A

N ‘advy AHVHEIT HOTL




TECH LIBRARY KAFB, NN

| T

2
NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS 00b 5027

TECHNICAIL. NOTE NO, 1748

CALCULATION OF TUNNEL~INDUCED UPWASH VELOCITIES
FOR SWEPT AND YAWED WINGS

By S. Katzoff and Margery E. Hannsh
STUMMARY

The tunnel—induced upwash field for a point element of 1ift in a
rectangular tunnel 1s shown to consist of three superimposed flelds
that, except for relative position, are independent of the lateral or
longitudinal locetlon of the 1ift element in the tunnel. One of these
fields is also independent of the type of turmel (open or closed) and
of the width-height ratio of the tunnel, and the other two, which
depend on thls ratio, are ldentical (except, perhaps, for sign). A
contour chart of the first fleld 1s given in the present paper; hence,
only one other contour chart need be calculated for any given tunnel
to permlit the determination of the induced upwash field for any position
of the lifting element. Contour charts of this other field are gliven
for three specific tunnels: an open tunnel of 2:1 width-height ratio,
a closed tumnel of 2:5 width—height ratio, and a closed tumnel of 10:7
wldth—helght ratlo. By superposition of results for various locations
of the 1ifting element, the totel field may be found for a wing of any
plan form and with any distributlion of 1ift.

For tunnels that are not rectangular or that cannot be considered
approximately rectanguler, the corresponding procedurs requlres the
preparation of a chart for each of several spanwlse locations of the
lifting element. Fven this procedure asppears simpler and more generally
applicable than the calculation of induced upwash for s serles o6f wing
spans and sweep angles.

INTRODUCTION

Ag 1s well mown, the calculatlon of subsonic wind—tunmnel-—wall
interference at a stralght unyawed 1lifting line is reducible to a
relatively simple two—dimensional flow problem; whereas the corresponding
calculation for a yawed or swept lifting line or the calculation of
induced cauwber or of the downwash correction at the tall cannot be
gimilerly simplified. Because of the present intensive study of swept—
wing and trianguler—wing configurations, much effort is belng directed
toward evaluation of tummel interference for such wings. In general
the calculations are very cumberscme (see, for example, references 1
and 2), not only because of the three—dimensional character of the flow
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problem but also because the preparation of a comprehensive set of
corrections for a particular wind tummel entalls calculations for at
least a two—parameter family of wings, that is, for v.[ngs of various
spans and various sweep angles.

In some recent studies made at the Langley Laboratory it became
evident that making computations of tumnel—interference flows for a two—
parameter family of wings wes an umecessary complication. Results of
equal accuracy can be achlieved by & scomewhat different and much more
flexible method which, in general, requires computation of only a one—
parameter family of charts and, for a rectangular tunnel, requires the
computation of only two charts. Furthermore, the computations for
these charts, which can be used for any wing, are generally simpler
than the computation of the tumnel interference field for a particular
wing by the usual method (in which the wing loading is represented by a
combination of yawed horseshoe vortices).

The proposed procedure is possibly known at same aeronautical
laboratories. Because of its apparent absence fram the literature,
however, and because procedures similsr to those of references 1
and 2 appear to be in general use, the present paper has been prepared
which outlines the method, describes the camputations, and gives
exemples of the derived charts. Thils paper 1s concerned exclusively
with the calculation of tunnel—induced vertical velocities in the
horizontal center plane of the tunnel, corresponding to a specified
load distribution on the wing, which is also assumed to lie in the
game plane. Modification of the procedure would be required for
application to triangular or highly swept wings at very high angles
of attack. No effort is made to discuss the corrections to the
measured force and moment characteristics, since the effects of the
induced upwash velocity on these chaeracteristics are discussed in
reference 1.

SYMBOIS
r strength of horseshoe vortex
JaY:] span of horseshoe vortex
AL 1ift of wing segment .
AS area of wing segment
cy mean 1ift coefficient of wing segment
CL wing 1ift coefficient

S wing area
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P alr density

v stream veloclity

b tunnel width

h tunnel height

x longitudinal coordinate

¥y lateral coordinate

z verticel coordinate

v upwash veloclty

C tunnel cross—sectional area

D cross—sectional area of tunnel having same

proportions as actual tunnel, but in which
tummel width 1s unity

+ : gemi—infinite doublet line, similar to doublet line
in tunnel

- semi—infinite doublet line, reverse of doublet line
in tunnel

& pemi-infinite source line

P semi—infinite sink line

a, b, ¢, and & - points on wing where 1lift is assumed to be
concentrated.

a'y, b', ¢', and d' nearest lateral images of points a, b, c, and d
a, B, and 7 points on wing where tunnel—induced upwash angles
are to be determined
CATCULATTION OF TUNNEL INTERFERENCE
Representation of Wing Loading
For purposes of computing the tunnel interference by the method
to be described, the assumed loading on the wing is approximated by

a distribution of point concentratlions of 1ift, about as Indicated
in figure 1. Roughly, this distribution 1s chosen by considering the
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wing erea to be made up of several smaller areas or segments, estimating
the 1ift on each, and locating each equivalent point concentration of
1ift at the approximate centroid of the 1lift on each segment. As has
frequently been shown, the tumnel interference field is determined mainly
by the total 1ift and the total rolling moueni and is otherwise relatively
independent of the precise 1ift distribution (references 3 and 4);
accordingly, representing the continuous loading by several discrete
point concentratlions in the indicated manner is normally satisfactory for
the calculation of the tumnel Interference fleld. In any event, where a
question arises as to the adequacy of the representation used (as in the
cagse of large—span wings), accuracy can be improved by increasing the
number of points or even extending the procedure from a summation to a
graphical or numericel Integration.

Apsoclated with each concentratlion of 1ift is a horseshoe vortex
of infinite stirength and zero span extending downstream from the point
where the 1ift is considered to be concentrated. The moment IAs of
each horseshoe vortex 1s gliven by the 1ift equation AL = pgVIAs. Since
the field of such a degenerate horseshoe vortex is easlily shown to be
equivalent to that of a line of source—sink doublets (reference 5), -1t
will be referred to, for convenience, as a doublet line. The problem to
be discussed in the succeeding sections, then, is the determination of
the tummel—interference flow resulting from the presence of a group of
doublet lines similar to -that indicated in figure 1.

Rectangular Tunnels

Tmage gystem and interference field for closed tumnel.— Figure 2(a)
shows the lmage system for one doublet line located in the horizontal
plane of symmetry of a closed rectangular tunnel. The tunnel boundary
is indicated by heavy lines and the boundaries of the image tunnels are
indicated by light lines. The image doublets are represented by plus or
minug signs according as they are the same as, or the reverse of, the
doublet in the tunnel. This Image system satisfies the boundary condition
that the velocity components normal to the walls must be zero.

The complete system of doublets in figure 2(a) 1s seen to camprise
two superimposed, doubly infinite, 2b by h rectangular arrays of doublets.
One array, indicated by circles, may be considered as centered at the
original doublet (double circle) in the tunnel; the other array, indicated
by squares, may be considered as centered at the nearest horizontal image
doublet (double square).

The interference fileld is thus made up of two parts:

(a) The field of a complete rectangular arrey having 1ts center
at the double sguare.

e — - - e —
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(p) The field of a complete rectangular arrey having its center
at the double circle with, however, the field of the center
doﬁble; amitted (since 1t represents the 1ifting element
itself).

Bagis of proposed calculation procedure.— The dimensions of each array,
end hence 1ts associated flow field, are determined only by the dimensions
of the tunnel and are independent of the lateral or longitudinal location
of the 1ifting element in the tumnel. Accordingly, once the two flelds
heve been caelculated, they may be used for finding the interference
corresponding to a lifting element loceted anywhere 1n the horizontal
center plane of the given closed rectangular tunnel. The procedure ls
indicated in figure 3 which shows (plan view) a 1lifting element and
1ts nearest image. In figure 3(a) is indicated the contour chart of
induced upwash velocltles calculated for a 2b by h doubly infinite
array of unit doublets wlth the center doublet omitted. The point on
the contour chart that is located at the head of the omitted doublet line
is indicated as the origin; and the chart is placed so that this point falls
on the 1lifting element, designated a. In figure 3(b) is indicated the
contour chert for the complete doubly infinite array, placed so that its
origin falls on the first image, deslignated a'. At any specified point «
in the horizontal center plene of the tunnel, the induced upwash corre-—
sponding to the given element of 1ift 1s found by adding the values read
at that point from the contour cherts in figures 3(a) and 3(b) and
multiplying the sum by the strength of the equivalent doublet.

The procedure may be slightly modifled to teke advantage of the fact
that the chart of figure 3(b) is equivalent to the sum of two other charts,
namely, the chart of figure 3(a), which is for the doubly infinite array
with the center doublet cmitted, and a chart for a single doublet (that
which is omitted in the chart of figure 3(a)). Accordingly, the chert of -
figure 3(a) and a chart for a single doublet should suffice to obtain the
desired upwash values. In this modification, the step indicated in
figure 3(b) is replaced by the two steps indicated in figures 4(a) and 4(Db).
Three readings are thus necessary instead of two; since the chart for a
single doublet is given In the present paper (fig. 5), however, this
modification requires that only the chart of figure 3(a) be prepared for
each given rectanguler tunnel.

Tmage systems for other rectangular tunnels.— In figures 2(b) to 2(f),
are shown the image systems for five other rectanguler tumnels, namely,
thoge that are, respectively,

(1) Open on all four sides
(2) Closed at the sides but open at the top and bottom
(3) Closed at the top and bottom but open at the sides

(4) Closed only at the bottom
(5) Closed, containing a semispan reflection model
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Open boundaries are Iindicated by dashed lines and closed boundaries, by
solid lines. In each of these cases, as with the completely closed.
tunnel, the image system is seen to be composed of two 2b by h rectangular
arrsys so that the procedure Just outlined should also apply for these
configurations, except that for some of the tunnels, however, the two
arrays have opposite signs so that the readings from figures 4(a)

and 4(b) must be subtracted fram, instead of added to, those from

figure 3(r). The rectangular arrsys are not, however, all of the same
type as for the completely closed tumnel. The image systems can be
briefly described as follows: -

For a closed tumnel (fig. 2(a)), each array consists of alternate
horizontal rows of plus and minus doublets, and the two arrays have the
same sign (that is, the mnearest horizontal image is plus).

For an open tumnel (fig. 2(b)), all the doublets of each array have
the same sign, but the two arrsys have opposlite slgns.

FTor a tunnel closed at the sides but open at- the top and bottom
(fig. 2(c)), all the doublets of each array have the same sign and the
two arreys also have the same gigp; that 1s, only plus doublets occur
in the image system. ’

For a tunnel closed at the top and bottom but open at the sides
(fig. 2(d)), each arraey consists of alternate rows of plus and minus
doublets, and the two arrays have opposite signs.

For a tunnel closed only at the bottom {fig. 2(e)), the signs for
the image system in the first, third, fifth, . . . rows above the plane
of the wing are, respectively, opposite to those in the first, third,
Pifth, . . . rows below the plane of the wing. Since the net effect
of the odd numbered rows on the upwash velocity Iin the center plane l1s
thus zero, they may be neglected. Two 2b by 2h arrays remain having
alternate rows of plus and minus doublets and the two arrays have

opposlite signs.

For a closed tunnel conteining a semispan reflectlon model
(fig. 2(£)), each array has alternate rows of plus and minus doublets
and the two arreys have the same sign. In the Indicated image system
the imege in the double square, which represents the second half of
the reflection model, must, like the model itself, be excluded from
consideration in calculating the interference field. The reflection
gaystem thus consists of two arrays in each of which the central doublet
ig omitted. TFor this case, then, only one chart (similar to that of
fig. 3(a)) is used. The same conclusion applies whenever a semispan
reflection model is tested with & tunnel wall as the reflection plane.
As & corollary, it follows that, if a tunnel is used to test only
symmetrical, unyawed, full-spen models, only one contour chart need be
prepared, and the chart would represent the field of a b by h (instead
of & 2b by h) array. This conclusion can be readily verified by
examining figure 2(g) which represents a closed tunnel containing a
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full-span symmetrical model and which is identical with figure 2(f) except
that the reflection plane and all its images are omitted.

Bagic formulas and summation procedures for calculating contour charts.—
The potential of a unit doublet at the origin with its axis vertical is

lm(xe + 32 + 22>3[2

The potential of a doublet line extending along the x—exis from the origin
to Infinity 1s then “

= ° z 4x’
2 r},;J; (e —x)2 + 52 + 872

=4 Z 1+ b8
b g2, g2 Va2 + 32 + 22

The corresponding upwash veloclty 1s

3 1 | y2 —22 x[(y2 + 22) (x2 + y2 — 252) — 2x2z2]
W = SZ— = - + (l)

e (y2 ¥ 22) : (Y2 + 22)2(12 +32 + 22)3/2

For any particular array .of unit doublets, the upwash veloclty at a
point (the contour value at that point on the contour chert) is the sum
of the values glven by this formula for a series of values of y differing
by 2b and a series of values of 2z differing by h, wlth appropriate
signs according to the type of array. Such a double series usually con—
verges rather slowly, however, and, in general, the practicability of the
sumeation depends on the use of certaln approximation methods for summing
the flelds of a&ll but an inner group of doublets surrounding the origin.
These approximation methods, which are very similar to those used in the
two—dimensional studies of reference 6, are reviewed in the following
paregraphs.

The field of a doublet line is approximately the same as the field
of a horseshoe vortex of the same moment, provided the distance from the
doublet line to the point where the field is being considered 1s suf-
ficiently large relatlive to the span of the horseshoeifortex. Thus, in
computing the field near y = 0, a row of equal doublets at, for instance,
y = kb, 6b, 8b, . . . may be replaced by a row of horseshoe vortices of
span 2b having their trailing vortices at y = 3b and 5b, 5b and Tb,
b and 9b, . . . In this representation, all the trailing vortices except
the innermost one cancel in pairs, so that the infinite row of doublets 1s

B e e e
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equivalent to an L—vortex of which the trailing portion 18 at y = 3b
and of which the bound portion extends along the y—axls from 3b to
Infinity. The field of this infinite I~vortex is easlly calculated by
the Biot—Bavart law.

For a horizontal row of doublets lylng a reasonable distance above
the origin, all may be replaced by horseshoe vortices of span 2b, iIn
which case all the trailing vortices cancel in pairs and only the bound
vortex extending from —e +to +® remains. Its field is merely that of
& two—dimensional vortex.

By means of the approximate representations Just described, a
rectangular array of doublets in which the alternate rows have plus and
minus signs can be assumed approximately equivalent to an inner group of
doublets around the origin (those that are too close to be adequately
replaced by horseshoe vortices) and an outer arrangement of L~vortices
and two—dimensionel bound vortices (fig. 6(a)). Because of the alter—
nating signs, the upwash velocity at amy polnt due to the two—dimensional
bound vortices mey be formulated as the sum of the terms of an alternating
series, which can be readily evaluated.

For a rectangular arrasy of doublets in which 211 have the same sign, .
a different replacement system 1s more convenient. Instead of belng
extended horizontally into a horseshoe vortex, the doublet is extended
vertically into a source line and a sink line, a disteance h apart.
The source lines and sink lines in any column cancel each other in

palrs and only the source or sink lines, at a distance %. ebove or below

the inner group of doublets, remain. Thils equivalent representation for
a rectangular array in which all doublets have the ssme sign 1s shown in
figure 6(b). ,

It may be noted that the previously mentioned L—vortices are actually
horseshoe vortices of which the second trailing vortex ls at ¥y = «@ and
that gimilar trailing vortices at ¥y = e are assoclated with the infinite
bound vortices. Similarly, where the source lines and sink lines in the
coluwuns cancel each other in palrs, a row of sink lines remain at z = +w
and a row of source lines at 2z = —e The trailing vortices at ¥ = tw
require no specilal consideration because their alternating signs would,
in any event, result in zero net effect In the reglon of the orligin. The
gink and source lines, however, would be expected to result in a uniform
upwash throughout the fleld, provided the extent of the rows of source
and sink lines is of a higher order of infinity than is thelr distance
from the origin. For the open tunnel (fig. 2(b)), whether this uniform
vertical veloclity is included or mnot is Immaterlal, since the two arrays
have opposite signe and the uniform upwash would thereby be eliminated in
any case. The question stlll remains, however, for the tunnel of
figure 2(c), where the two arrays have the same sign. Actually, a
discussion of the relative orders of the two Infinlities is not necessary
or desirable inasmuch as a simple physical criterion is available for
such cases, namely, that the total Induced upwash should approacn zéro
at a large disiance upstream from the wing. Since the field indicated
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in figure 6(b) alreedy satisfies this upstream boundary condition, the
uniform upwash that would result from the source and sink lines at
infinity should clearly not be included.

Remarks on preparation of charts and scale factors.— In the
calculations for the charts, it is convenlent to consider the tunnel
width as unity and to assume unit doublets in the arrsy (that is, to
use equation (1) for the f£i6ld of each doublet). The half—sidth of
the charts need never exceed 1.5 tunnel widths, as 1s obvious from
figure 4. An example of a complete chart, used in estimating corrections
for the Langley full-scale tumnel (idealized to a 60— by 30—foot rec—
tengular tunnel), is shown in figure 7(e). The tunnel was considered as
a 1 unit by 1/2 unit rectangle, so that the tunnel area D was 1/2
and the doublet images formed a 2 by 1/2 array. The chart half-width
is considerably less than 1.5 tunnel widths because results for this
case showed that the outer contour values, when added to those of
figure 5, were insignificant. In figure 7(b) is shown a chart for a
cloged 3— by T.5~foot rectangular tumnel., The chart was computed for
a 2 by 2.5 array of unit doublets corresponding to a tunnel area D
of 2.5. Figure T(c) shows a chart similarly developed for T7— by 10—Ffoot
rectangular tunnels.

The chart of flgure 5 for the single unit doublet, as computed
from equation (1) with z = O, was plotted with the unit distance
indicated on the coordinate axes. In keeping with the preceding
discussion, the chart half-width is 1.5 units.

The scale factor for the eventual application df the charts is
developed as followsa:

The 1ift AL assoclated with a horseshoe vortex of strength T
and span As (actual wing dimensions) is given by

AL = cpASg%g
= (I'As)pV
from which
T'As = 21%§I

which is the equivalent doublet strength of a segment of wing area AS
having a mean 1ift coefficlent c¢j3. The chart contours give the upwash
velocity w for a doublet of unit strength in a tunnel of cross—
gectional ares D. For the case of a doublet of strength I'As in a
tunnel of area C,

w = Chart reading X I'As X ]-é-

- BN e e e e —— e s —m——— - e m e e e e —
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or, wlth T'As replaced by c¢j;ASV/2, the upwash angle in radians is

%rﬂﬁ=Cha:c'trea.dingxg-azég-12

or in degrees,

28.60 z@
Chart reading X o)

If the suggested conventlon — that the tunmnel width be taken as unity
in computing the charts — is followed, then the factor D/C 1is
merely 1/b2 and the expression for the upwash angle in degrees is

20,
Chartread.ingx—s—é:-)—éﬁs-

Use of charts in computation of tunnel Interference flow.— Asgsume

that correctlons are desired for a closed rectangular tunnel, for which
a chart of the type shoyn in figure 7 (that is, for an infinite arrey of
doublets with the center doublet omltted) has been prepared. This chart
is designated chart A. The chart of figure 5, for a single doublet, is
designated chart B. The procedure may then be outlined as follows:

(1) Sketch the complete wing to the scale of the charts. Show the
sides of the tumnel and the neareat images of the semispans (fig. 8).

(2) Assume the 1ift to be concentrated- at, say, two points on each
semigpan, and estimate the 1ift at each point in terms of c¢;AS. The
sun of the four values of c¢;AS must equal CpS for the complete wing.
Also, if rolling moments are being considered, the rolling-moment
coefficient of the approximate representatlion should equal the rolling—
moment coefficlent of the wing. Indicate on the gketch the four polnts a,
b, ¢, and & and their nearest images a', b', c¢', and d'. Also,
locate on the sketch the points at which the tunnel—induced angle is
. desired, sey a, B, and 7. In general, where only a few points are
used, greatest accuracy is achieved by assuming the 1ift (1n the case of

an unflepped wing) to be concentrated along the %—chord line and
determining the upwash angles along the i-—chord. line, as indicated

in figure 8. (The drag correction, however, is probably more correctly
determined from the upwash angles at the %;-—chord line where the 1ift is

concentrated.)

(3) Place the origin of chart A at point a and read the chart
contours at a, B, and 7. Repeat for points b, c, and d. Then place
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the origin of chart A at point a' and read the chart contours at
a, B, and 7. Repeat for points b', ¢', and d'. Finally, place the
origin of chart B at point a' and read the chart at «, B, and 7.
Repeat for points b', c', and 4'.

(4) Finally, for the upwash angle at, ssy, point o, find the
algebraic sum of the three chart readings (for example, (a,a)
and (a',a) from chart A and (a',a) from chart B) for each of the
four points a, b, ¢, and d. Multiply each of these four sums by the

value of ggiécpas for the wing segment under consideration

(a, b, c, or 4) and add. The total ig the tunnel—induced upwash angle,
in degrees, at point «. Proceed similarly for points B and 7.

When the vertical symmetry plane of the tunnel 1s also the vertical
gymmetry plane of the wing (in general, for zero yaw and zero alleron
deflection), the work can be somewhat reduced. Only two load points a
and b on the wing and their two reflections a' and b' need be used,
although the chart readlngs must. still be obtalned at the two symmetri—
celly located points o and 7 on both sides of the wing. The net
Induced angle at o or 7 1s obtalned by adding the results for «
and 73 the met Induced angle at B 1s obtained by doubling the result
for B.

Nonrectangular Tunnels

For a circuler or other nonrectangular tunnel, the problem cannot
be reduced to that of calculating a single chart. A series of contour
charts, giving the tunnel-induced upwash in the horizontal center plane
of the tunnel, must be constructed for a serles of gpanwise locatlons
of the doublet in the tunnel. Even so, only a single parameter — the
spanwlige locatlon of the doublet — 1s involved, since variations in
longitudinal location of the 1lifting element (such as those for the
different 1ifting elements along & swept wing) are readily teken into
account by longltudinal shift of the contour chert. From a study of
reference 2 1t appears reasonably certaln not only that the calculations
herein proposed would have been easler than the calculations therein
Indicated but also that the eventual application of the results to wings
of irregular load distributions would also have been easier. The
procedure indicated In reference 7 seems to be of thils type.

With regard to studies simlilar to those of reference 2, 1t may be
of value to point out that, at least theoretically, a series of calcu—
lations for any one sweep angle should suffice for computing the tunnel
effect for any other sweep angle. Figure 9(a) shows, for example, how
the loading on a 60° gwept wing may be approximated by a single horseshoe
vortex and two palrs of unswept horseshoe vortices, where the inner
vortex of each palr has the same strength as the superlmposed outer
vortex but has opposite rotation. Figure 9(b) shows, similarly, how
a palr of horseshoe vortices and a single horseshoe vortex, all

e e e e T e e o T et i e~ o T e g S £ e o et s Mmoo
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swept 45°, might be used to approximate the loading on a 60° swept wing
with sufficilent accuracy to calculate the tunnel interference velocities.

CONCLUDING REMAREKS

For a lifting wing of arbitrary loading and plan- form, situated in
the horizontal center plane of a rectangular tunnel, the tunnel—linduced
upwash velocities in the seme plane can be readily calculated with the
aid of two charts. One is given in the present paper; the other must be
computed for each tunmel. Such simplification is not possible for
nonrectangular tunnels. In any case, however, computations for a series
of wings of various spans and various sweep angles are unnecessary. Thus,
computations for several spanwise positions of the lifting element or
computations for a set of unswept wings of various spans should provide
a basis for computing tumnel—induced upwash veloclties for any wing in
the horizontal center plane of the tunnel.

Langley Aeronauticel Laboratory
National Advisory.Committee for Aeronsutics
Langley Field, Va., July 27, 1948
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Figure 1.- Field of a lifting wing represented as the field of four doublet lines
extending downstream from four points where the lift is assumed to be

concentrated.
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(a) Closed tunnel. .m

Figure 2.- Image configurations for doublet lines in rectangular tunnels.
Doublet in tunnel is indicated by double circle; nearest lateral image is
indicated by double square.
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Figure 2.- Continued.

(¢) Tunnel closed at sides, open at top
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(e) Tunnel closed at bottom, open on
three sides.

Continued.

Figure 2.~
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(f) Closed tunnel containing a sémispa.n
reflection model.
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() Closed tunnel containing a full-span
symmetrical model.

Figure 2.- Concluded.
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/7

tunnel walls

(a) Chart representing field of doubly infinite
array of unit doublets with center doublet
omitted; origin of chart is placed on point a.

NN

_ tunnel walls —

j
/

(b) Chart representing field of complete doubly infinite
array of unit doublets; origin of chart is placed
on nearest image a’.

Figure 3.- Tunnel interference velocity at point @, corresponding to lift
concentration at point a, determined by two contour charts.
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tunnel walls.

(a) Same as the chart of figure 3(a);
orlgm at a'.

————— tunnel walls —— |

(b) Chart representing field of a single
unit doublet.

Figure 4,- Two contour charts, the sum of which equals the chart of
figure 3(b).
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(2) Array having alternate rows of plus and
minus doublets.

. o o o
+ + +
+ +
+ + +
o O e

(b) Array having only plus doublets.

Figure 6.- Approximate representations of the two types of doubly infinite,
rectangular arrays of doublets with center doublet omitted,
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(2) Chart used in deriving corrections for the Lengley full-gcale tunnel; calculated for a 2 (horizontal) by

0.6 (vertical) array, with all doublets positive,

Figure 7.~ Examples of chart A, Contours of upwash veloclty in the horizontal center plane due to &
doubly Inflnite array of unit semi-infinite doublet lines with the center doublet line omitted. The
origin O is the head of the center doublet line.
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Chart for Langley two-dimensional tunnels (3 by 7.5 {t); calculated for e 2 (horizontal)
arrey. The doublets alternate In sign vertically, with those in the horizontal center p

Figure 7.- Continued.
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{c) Chart for 7- by 10-foot tunnels; calculated for a 2 (horizontal) by 0.7 (vertical) array. The doublets
alternate in sign vertically, with those in the horizontal center plane positive.
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Figure 7.- Concluded.
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Figure 8.- Sketch used with charts A and B for determining tunnel-induced
upwash angles. Sketch shows points a, b, ¢, and d where lift is assumed

to be concentrated, the nearest images a', b', c', and d', and points a,

AN

B, and y where the tunnel-induced upwash angles are to be determined.
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(a) Approximation by horseshoe vortices
of 0° sweep.

(b) Approximation by horseshoe vortices of
450 sweep.

Figure 9.- Approximation of the loading on a 60° sweptback wing by means
of horseshoe vortices of different sweep.
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